Find the word definition

Wiktionary
ultimate tensile strength

alt. (context engineering English) The greatest tensile engineering stress a material can withstand before it fractures. n. (context engineering English) The greatest tensile engineering stress a material can withstand before it fractures.

Wikipedia
Ultimate tensile strength

Ultimate tensile strength (UTS), often shortened to tensile strength (TS) or ultimate strength, is the capacity of a material or structure to withstand loads tending to elongate, as opposed to compressive strength, which withstands loads tending to reduce size. In other words, tensile strength resists tension (being pulled apart), whereas compressive strength resists compression (being pushed together). Ultimate tensile strength is measured by the maximum stress that a material can withstand while being stretched or pulled before breaking. In the study of strength of materials, tensile strength, compressive strength, and shear strength can be analyzed independently.

Some materials break very sharply, without plastic deformation, in what is called a brittle failure. Others, which are more ductile, including most metals, experience some plastic deformation and possibly necking before fracture.

The UTS is usually found by performing a tensile test and recording the engineering stress versus strain. The highest point of the stress–strain curve (see point 1 on the engineering stress/strain diagrams below) is the UTS. It is an intensive property; therefore its value does not depend on the size of the test specimen. However, it is dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.

Tensile strengths are rarely used in the design of ductile members, but they are important in brittle members. They are tabulated for common materials such as alloys, composite materials, ceramics, plastics, and wood.

Tensile strength can be defined for liquids as well as solids under certain conditions. For example, when a tree draws water from its roots to its upper leaves by transpiration, the column of water is pulled upwards from the top by the cohesion of the water in the xylem, and this force is transmitted down the column by its tensile strength. Air pressure, osmotic pressure, and capillary tension also plays a small part in a tree's ability to draw up water, but this alone would only be sufficient to push the column of water to a height of less than ten metres, and trees can grow much higher than that (over 100m).

Tensile strength is defined as a stress, which is measured as force per unit area. For some non-homogeneous materials (or for assembled components) it can be reported just as a force or as a force per unit width. In the International System of Units (SI), the unit is the pascal (Pa) (or a multiple thereof, often megapascals (MPa), using the SI prefix mega); or, equivalently to pascals, newtons per square metre (N/m²). A United States customary unit is pounds per square inch (lb/in² or psi), or kilo-pounds per square inch (ksi, or sometimes kpsi), which is equal to 1000 psi; kilo-pounds per square inch are commonly used in one country (USA), when measuring tensile strengths.