Wiktionary
n. (context organic chemistry English) Any of a class of unsaturated derivatives of tocopherols that have three double bonds in the side chain
Wikipedia
Tocotrienols are members of the vitamin E family. An essential nutrient for the body, vitamin E is made up of four tocopherols (alpha, beta, gamma, delta) and four tocotrienols (alpha, beta, gamma, delta). The slight difference between tocotrienols and tocopherols lies in the unsaturated side chain of tocotrienols, having three double bonds in its farnesyl isoprenoid tail.
Tocotrienols are natural compounds found in select vegetable oils, including rice bran oil and palm oil, wheat germ, barley, saw palmetto, anatto, and certain other types of seeds, nuts, grains, and the oils derived from them. This variant of vitamin E typically only occurs at very low levels in nature.
Chemically, vitamin E in all of its forms functions as an antioxidant. All of the tocotrienol and tocopherol isomers have this antioxidant activity due to the ability to donate a hydrogen atom (a proton plus electron) from the hydroxyl group on the chromanol ring, to a free radical in the body. This process inactivates ("quenches") the free radical by effectively donating a single unpaired electron (which comes with the hydrogen atom) to the radical. Thus, one model for the function of vitamin E in the body is that it protects cell membranes, active enzyme sites, and DNA from free radical damage. Although the many vitamers of vitamin E have different distributions and metabolic fates, there is as yet no accepted evidence that any of the active forms of vitamin E are able to do any essential function in the body that each of the others is not also able to do. Specifically, symptoms caused by alpha-tocopherol deficiency can be alleviated by tocotrienols. Thus, tocotrienols may be viewed as being members of the natural vitamin E family not only structurally but also functionally.
While the majority of research on vitamin E has focused on alpha-tocopherol, studies into tocotrienols account for less than 1% of all research into vitamin E. More recently, tocotrienols have been the subject of increased scientific attention, with research on tocotrienols accounting for nearly 30% of all peer-reviewed articles published on vitamin E between 2009 and 2010. The first-ever scientific compilation of tocotrienol research, Tocotrienols: Vitamin E Beyond Tocopherols, was published in 2008 by CRC and AOCS Press, while a second edition was published in 2013.
Tocotrienols have only a single chiral center, which exists at the 2' chromanol ring carbon, at the point where the isoprenoid tail joins the ring. The other two corresponding centers in the phytyl tail of the corresponding tocopherols do not exist due to tocotrienol's unsaturation at these sites. Tocotrienols extracted from natural sources always consist of the dextrorotatory enantiomers only. These naturally occurring, dextrorotatory stereoisomers are generally abbreviated as the "d-" forms, for example, "d-tocotrienol" or "d-alpha-tocotrienol". In theory, the unnatural "l-tocotrienol" ( levorotatory) forms of tocotrienols could exist as well, which would have a 2S (rather than 2R) configuration at the molecules' single chiral center. In practice, however, tocotrienols are only typically produced from natural sources, and neither the synthetic mixed stereoisomer ("dl-tocotrienol") or synthetic single stereoisomer ("l-tocotrienol") are marketed as dietary supplements.