Find the word definition

Crossword clues for nucleon

The Collaborative International Dictionary

nucleon \nucleon\ n. (Physics) A neutron or proton, when contained within an atomic nucleus.


n. One of the subatomic particles of the atomic nucleus, i.e. a proton or a neutron.


n. a constituent (proton or neutron) of an atomic nucleus


In chemistry and physics, a nucleon is one of the particles that makes up the atomic nucleus. Each atomic nucleus consists of one or more nucleons, and each atom in turn consists of a cluster of nucleons surrounded by one or more electrons. There are two known kinds of nucleon: the neutron and the proton. The mass number of a given atomic isotope is identical to its number of nucleons. Thus the term nucleon number may be used in place of the more common terms mass number or atomic mass number.

Until the 1960s, nucleons were thought to be elementary particles, each of which would not then have been made up of smaller parts. Now they are known to be composite particles, made of three quarks bound together by the so-called strong interaction. The interaction between two or more nucleons is called internucleon interactions or nuclear force, which is also ultimately caused by the strong interaction. (Before the discovery of quarks, the term "strong interaction" referred to just internucleon interactions.)

Nucleons sit at the boundary where particle physics and nuclear physics overlap. Particle physics, particularly quantum chromodynamics, provides the fundamental equations that explain the properties of quarks and of the strong interaction. These equations explain quantitatively how quarks can bind together into protons and neutrons (and all the other hadrons). However, when multiple nucleons are assembled into an atomic nucleus ( nuclide), these fundamental equations become too difficult to solve directly (see lattice QCD). Instead, nuclides are studied within nuclear physics, which studies nucleons and their interactions by approximations and models, such as the nuclear shell model. These models can successfully explain nuclide properties, for example, whether or not a certain nuclide undergoes radioactive decay.

The proton and neutron are both baryons and both fermions. They are quite similar. One carries a non-zero net charge and the other carries a zero net charge; the proton's mass is only 0.1% less than the neutron's. Thus, they can be viewed as two states of the same nucleon. They together form the isospin doublet . In isospin space, neutrons can be rotationally transformed into protons, and vice versa. These nucleons are acted upon equally by the strong interaction. This implies that strong interaction is invariant when doing rotation transformation in isospin space. According to the Noether theorem, isospin is conserved with respect to the strong interaction.

Usage examples of "nucleon".

I recall offhand, Tywood has published papers on the effect of liquid viscosity on the wings of the Rayleigh line, on higher-orbit field equations, and on spin-orbit coupling of two nucleons, but his main work is on quadrupole moments.

On this frame one could see it in section, traced by nucleons of elements heavier than oxygen.

In either case, there'd be nothing left of you to send back to the folks but some squashed nucleons and a puff of degenerate electron gas, and it's hard to find the right size box for those.