Find the word definition

Wiktionary
standard electrode potential

n. an electrode potential measured under standard conditions; a temperature or 298K, 1 atmosphere pressure and at 1 mole of the activity of redox participants of the half-reaction.

Wikipedia
Standard electrode potential (data page)

The values of standard electrode potentials are given in the table below in volts relative to the standard hydrogen electrode and are for the following conditions:

  • A temperature of 298.15 K (25 °C);
  • An effective concentration of 1 mol/L for each aqueous species or a species in a mercury amalgam;
  • A partial pressure of 101.325 kPa (absolute) (1 atm, 1.01325 bar) for each gaseous reagent. This pressure is used because most literature data are still given for this value rather than for the current standard of 100 kPa.
  • An activity of unity for each pure solid, pure liquid, or for water (solvent).
  • Although many of the half cells are written for multiple electron transfers, the tabulated potentials are for a single electron transfer. All of the reactions should be divided by the stoichiometric coefficient for the electron to get the corresponding corrected reaction equation.
  • Divide the potentials by 0.059 V to get pe° values, which are necessary for Nernst Equation and other thermodynamic calculations.

Legend: (s) – solid; (l) – liquid; (g) – gas; (aq) – aqueous (default for all charged species); (Hg) – amalgam.

Half-reaction

(V)

Ref.

Oxidant

Reductant

&

-9

Zz

9

Sr +

Sr

Ca +

Ca

Pr +

Pr

3 N(g) + 2 + 2

2 HN(aq)

Li +

Li(s)

N(g) + 4 + 2

2 NHOH(aq) + 2

Cs +

Cs(s)

Ca(OH) + 2

Ca + 2 OH

Er +

Er

Ba(OH) + 2

Ba + 2 OH

Rb +

Rb(s)

K +

K(s)

Ba + 2

Ba(s)

La(OH)(s) + 3

La(s) + 3

Fr +

Fr

Sr + 2

Sr(s)

Sr(OH) + 2

Sr + 2 OH

Ca + 2

Ca(s)

Eu + 2

Eu(s)

Ra + 2

Ra(s)

Ho +

Ho

Bk +

Bk

Yb + 2

Yb

Na +

Na(s)

Mg +

Mg

Nd +

Nd

Mg(OH) + 2

Mg + 2 OH

Sm + 2

Sm

BeO + 3 HO + 4

2 Be + 6 OH

Pm +

Pm

Dy +

Dy

No + 2

No

HfO(OH) + HO + 4

Hf + 4 OH

Th(OH) + 4

Th + 4 OH

Md + 2

Md

Tm + 2

Tm

La + 3

La(s)

Y + 3

Y(s)

Mg + 2

Mg(s)

ZrO(OH)(s) + + 4

Zr(s) + 4

Pr + 3

Pr

Ce + 3

Ce

Er + 3

Er

Ho + 3

Ho

H AlO + HO + 3

Al + 4 OH

Nd + 3

Nd

Tm + 3

Tm

Al(OH)(s) + 3

Al(s) + 3

Sm + 3

Sm

Fm + 2

Fm

Am +

Am

Dy + 3

Dy

Lu + 3

Lu

Tb + 3

Tb

Gd + 3

Gd

H + 2

2H

Es + 2

Es

Pm + 2

Pm

Tm +

Tm

Dy + 2

Dy

Ac + 3

Ac

Yb + 3

Yb

Cf + 2

Cf

Nd + 2

Nd

Ho + 2

Ho

Sc + 3

Sc(s)

AlF + 3

Al + 6 F

Am + 3

Am

Cm + 3

Cm

Pu + 3

Pu

Pr + 2

Pr

Er + 2

Er

Eu + 3

Eu

Lr + 3

Lr

Cf + 3

Cf

Es + 3

Es

Pa +

Pa

Am + 2

Am

Th + 4

Th

Fm + 3

Fm

Np + 3

Np

Be + 2

Be

HPO +

P + 2 OH

U + 3

U

Sr + 2

Sr/Hg

HBO + HO + 3

B + 4 OH

ThO + 4H + 4

Th + 2 HO

HfO + 2 H + 4

Hf + HO

HPO + 2 HO + 3

P + 5 OH

SiO + HO + 4

Si + 6 OH

Al + 3

Al(s)

Ti + 2

Ti(s)

ZrO(s) + 4 + 4

Zr(s) + 2

Zr + 4

Zr(s)

Ti + 3

Ti(s)

TiO(s) + 2 + 2

Ti(s) +

TiO(s) + 2 + 2

2TiO(s) +

Zn(OH) + 2

Zn(s) + 4

Mn + 2

Mn(s)

Fe(CN) + 6 + 2

Fe(s) + 6HCN(aq)

Te(s) + 2

Te

V + 2

V(s)

Nb + 3

Nb(s)

Sn(s) + 4 + 4

SnH(g)

SiO(s) + 4 + 4

Si(s) + 2

B(OH)(aq) + 3 + 3

B(s) + 3

Fe(OH)(s) + 2

Fe(s) + 2

FeO(s) + 3 + 2

2Fe(OH)(s) + 2

TiO + 2 + 4

Ti(s) +

'''2 HO + 2

H(g) + 2'''

Bi(s) + 3 + 3

BiH

Zn + 2

Zn(Hg)

Zn + 2

Zn(s)

TaO(s) + 10 + 10

2 Ta(s) + 5

Cr + 3

Cr(s)

AgS(s) + 2

2Ag(s) + S(aq)

[Au(CN)] +

Au(s) + 2CN

Ta + 3

Ta(s)

PbO(s) + + 2

Pb(s) + 2

2TiO(s) + 2 + 2

TiO(s) +

Ga + 3

Ga(s)

U +

U

HPO(aq) + +

P(white) + 2

HPO(aq) + 2 + 2

HPO(aq) +

HPO(aq) + 3 + 3

P(red) + 3

Fe + 2

Fe(s)

2 CO(g) + 2 + 2

HOOCCOOH(aq)

Cr +

Cr

Cd + 2

Cd(s)

GeO(s) + 2 + 2

GeO(s) +

CuO(s) + + 2

2Cu(s) + 2

PbSO(s) + 2

Pb(s) + SO

PbSO(s) + 2

Pb(Hg) + SO

Eu +

Eu

In + 3

In(s)

Tl +

Tl(s)

Ge(s) + 4 + 4

GeH(g)

Co + 2

Co(s)

HPO(aq) + 2 + 2

HPO(aq) +

V +

V

Ni + 2

Ni(s)

As(s) + 3 + 3

AsH(g)

AgI(s) +

Ag(s) + I

MoO(s) + 4 + 4

Mo(s) + 2

Si(s) + 4 + 4

SiH(g)

Sn + 2

Sn(s)

O(g) + +

HO•(aq)

Pb + 2

Pb(s)

WO(s) + 4 + 4

W(s) + 2

P(red) + 3 + 3

PH(g)

CO(g) + 2 + 2

HCOOH(aq)

Se(s) + 2 + 2

HSe(g)

CO(g) + 2 + 2

CO(g) +

SnO(s) + 2 + 2

Sn(s) +

SnO(s) + 4 + 4

SnO(s) + 2

WO(aq) + 6 + 6

W(s) + 3

P(white) + 3 + 3

PH(g)

Fe + 3

Fe(s)

HCOOH(aq) + 2 + 2

HCHO(aq) +

2 + 2

H(g)

AgBr(s) +

Ag(s) + Br

SO + 2

2 SO

FeO(s) + 8 + 8

3Fe(s) + 4

N(g) + 2 + 6 + 6

2 NHOH(aq)

HgO(s) + + 2

Hg(l) + 2

Cu(NH) +

Cu(NH) + 2NH

Ru(NH) +

Ru(NH)

NH(aq) + 4 + 2

2NH + 4

HMoO(aq) + 6 + 6

Mo(s) + 4

Ge + 4

Ge(s)

C(s) + 4 + 4

CH(g)

HCHO(aq) + 2 + 2

CHOH(aq)

S(s) + 2 + 2

HS(g)

Sn + 2

Sn

Cu +

Cu

HSO + 3 + 2

SO(aq) + 2

UO +

UO

SO + 4 + 2

SO(aq) + 2

TiO + 2 +

Ti +

SbO + 2 + 3

Sb(s) +

AgCl(s) +

Ag(s) + Cl

HAsO(aq) + 3 + 3

As(s) + 3

GeO(s) + 2 + 2

Ge(s) +

UO + 4 +

U + 2

Re + 3

Re(s)

Bi + 3

Bi(s)

VO + 2 +

V +

Cu + 2

Cu(s)

[Fe(CN)] +

[Fe(CN)]

Fc +

Fc(s)

O(g) + 2 + 4

4(aq)

HMoO + 6 + 3

Mo + 2

CHOH(aq) + 2 + 2

CH(g) +

SO(aq) + 4 + 4

S(s) + 2

Cu +

Cu(s)

CO(g) + 2 + 2

C(s) +

I + 2

3I

I(s) + 2

2I

[AuI] + 3

Au(s) + 4I

HAsO(aq) + 2 + 2

HAsO(aq) +

[AuI] +

Au(s) + 2I

MnO + 2 + 3

MnO(s) + 4

SO + 6 + 4

2S(s) + 3

HMoO(aq) + 2 + 2

MoO(s) + 2

+ 2 + 2

Hydrochinon2.svg

O(g) + 2 + 2

HO(aq)

Tl + 3

Tl(s)

PtCl + 2

PtCl + 2Cl

HSeO(aq) + 4 + 4

Se(s) + 3

PtCl + 2

Pt(s) + 4Cl

Fe +

Fe

Ag +

Ag(s)

Hg + 2

2Hg(l)

NO(aq) + 2 +

NO(g) +

2 FeO + 5 + 6

FeO(s) + 10

[AuBr] + 3

Au(s) + 4Br

Hg + 2

Hg(l)

[IrCl] +

[IrCl]

MnO + +

HMnO

2Hg + 2

Hg

Pd + 2

Pd(s)

[AuCl] + 3

Au(s) + 4Cl

MnO(s) + 4 +

Mn + 2

NO(aq) + 4 + 3

NO(g) + 2(l)

[AuBr] +

Au(s) + 2Br

[HXeO] + 2 + 2 +

[HXeO] + 4

[VO](aq) + 2 +

[[Vanadyl ion|[VO]]](aq) +

HTeO(aq) + 2 + 2

TeO(s) + 4

Br(l) + 2

2Br

Br(aq) + 2

2Br

IO + 5 + 4

HIO(aq) + 2

[AuCl] +

Au(s) + 2Cl

HSeO + 3 + 2

HSeO(aq) +

AgO(s) + 2 + 2

2Ag(s) +

ClO + 2 +

ClO(g) +

[HXeO] + 5 + 8

Xe(g) + 11

Pt + 2

Pt(s)

ClO(g) + +

HClO(aq)

2IO + 12 + 10

I(s) + 6

ClO + 2 + 2

ClO +

'O(g'') + 4 + 4

2'''

MnO(s) + 4 + 2

Mn + 2

[HXeO] + 3 + 6

Xe(g) + 7

Tl + 2

Tl

CrO + 14 + 6

2Cr + 7

Cl(g) + 2

2Cl

CoO(s) + 4 +

Co + 2

2 NHOH + + 2

NH + 2

2HIO(aq) + 2 + 2

I(s) + 2

BrO + 5 + 4

HBrO(aq) + 2

β-PbO(s) + 4 + 2

Pb + 2

α-PbO(s) + 4 + 2

Pb + 2

2BrO + 12 + 10

Br(l) + 6

2ClO + 12 + 10

Cl(g) + 6

HClO(aq) + + 2

Cl(aq) +

MnO + 8 + 5

Mn + 4

HO + +

(aq)

Au + 3

Au(s)

NiO(s) + 4 + 2

Ni + 2

Ce +

Ce

2HClO(aq) + 2 + 2

Cl(g) + 2

AgO(s) + 6 + 4

2Ag + 3

HClO(aq) + 2 + 2

HClO(aq) +

Pb + 2

Pb

MnO + 4 + 3

MnO(s) + 2

AgO(s) + 2 +

Ag +

HO(aq) + 2 + 2

2

Co +

Co

Au +

Au(s)

BrO + 2 + 2

BrO +

Ag +

Ag

SO + 2

2 SO

O(g) + 2 + 2

O(g) +

HMnO + 3 + 2

MnO(s) + 2

XeO(aq) + 6 + 6

Xe(g) + 3

HXeO(aq) + 8 + 8

Xe(g) + 6

FeO + 3 + 8

Fe + 4

XeF(aq) + 2 + 2

Xe(g) + 2HF(aq)

HXeO(aq) + 2 + 2

XeO(aq) + 3

F(g) + 2

2F

F(g) + 2 + 2

2HF(aq)

KrF(aq) + 2

Kr(g) + 2F(aq)

Standard electrode potential

In electrochemistry, the standard electrode potential, abbreviated E° or E (with a superscript plimsoll character, pronounced "standard" or " nought"), is the measure of individual potential of a reversible electrode at standard state, which is with solutes at an effective concentration of 1 mol dm, and gases at a pressure of 1 atm. The reduction potential is an intensive property. The values are most often tabulated at 25 °C. The basis for an electrochemical cell such as the galvanic cell is always a redox reaction which can be broken down into two half-reactions: oxidation at anode (loss of electron) and reduction at cathode (gain of electron). Electricity is generated due to electric potential difference between two electrodes. This potential difference is created as a result of the difference between individual potentials of the two metal electrodes with respect to the electrolyte. (Reversible electrode is an electrode that owes its potential to changes of a reversible nature, in contrast to electrodes used in electroplating and destroyed during their use)

Although the overall potential of a cell can be measured, there is no simple way to accurately measure the electrode/electrolyte potentials in isolation. The electric potential also varies with temperature, concentration and pressure. Since the oxidation potential of a half-reaction is the negative of the reduction potential in a redox reaction, it is sufficient to calculate either one of the potentials. Therefore, standard electrode potential is commonly written as standard reduction potential.