Wiktionary
n. (context physics English) a predicted state of matter, containing deconfined quarks and gluons, present in the very early universe (first millionth of a second), and recreated at extremely high energy density, such as those in the collision of heavy atomic nucleus as speeds very close to the speed of light.
Wikipedia
A quark–gluon plasma (QGP) or quark soup is a state of matter in quantum chromodynamics (QCD) which is hypothesized to exist at extremely high temperature, density, or both temperature and density. This state is thought to consist of asymptotically free quarks and gluons, which are several of the basic building blocks of matter. It is believed that up to a few milliseconds after the Big Bang, known as the Quark epoch, the Universe was in a quark–gluon plasma state. In June 2015, an international team of physicists produced quark-gluon plasma at the Large Hadron Collider by colliding protons with lead nuclei at high energy inside the supercollider’s Compact Muon Solenoid detector. They also discovered that this new state of matter behaves like a fluid.
The strength of the color force means that unlike the gas-like plasma, quark–gluon plasma behaves as a near-ideal Fermi liquid, although research on flow characteristics is ongoing. In the quark matter phase diagram, QGP is placed in the high-temperature, high-density regime; whereas, ordinary matter is a cold and rarefied mixture of nuclei and vacuum, and the hypothetical quark stars would consist of relatively cold, but dense quark matter.
Experiments at CERN's Super Proton Synchrotron (SPS) first tried to create the QGP in the 1980s and 1990s: the results led CERN to announce indirect evidence for a "new state of matter" in 2000. Current experiments (2011) at the Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) on Long Island (NY, USA) and at CERN's recent Large Hadron Collider near Geneva (Switzerland) are continuing this effort, by colliding relativistically accelerated gold (at RHIC) or lead (at LHC) with each other or with protons. Although the results have yet to be independently verified as of February 2010, scientists at Brookhaven RHIC have tentatively claimed to have created a quark–gluon plasma with an approximate temperature of 4 trillion (4×10) kelvin.
As already mentioned, three new experiments running on CERN's Large Hadron Collider (LHC), on the spectrometers ALICE, ATLAS and CMS, will continue studying properties of QGP. Starting in November 2010, CERN temporarily ceased colliding protons, and began colliding lead Ions for the ALICE experiment. They were looking to create a QGP and were expected to stop December 6, colliding protons again in January. A new record breaking temperature was set by ALICE: A Large Ion Collider Experiment at CERN on August, 2012 in the ranges of 5.5 trillion (5.5×10) kelvin as claimed in their Nature PR.
Usage examples of "quark-gluon plasma".
After zapping through the whole thing faster even than Driver, he'd come out raving and raring to go, hand-waving wild speculative explanations of the implied AG physics, from which all I could extract was that the density of the transplutonic nuclei generated a quark-gluon plasma at the nuclear core which, when set in cyclical motion, interacted directly with the quantum foam of the space-time manifold, after which matters got complicated and arcane.
Or do you imagine that the first events after the Big Bang, the first wild jitters of the quark-gluon plasma, stopped to fill in all the logical gaps?