Wiktionary
n. The act of parametrizing
Wikipedia
Parametrization (or parameterization; also parameterisation, parametrisation) is the process of deciding and defining the parameters necessary for a complete or relevant specification of a model or geometric object.
Parametrization is also the process of finding parametric equations of a curve, a surface, or, more generally, a manifold or a variety, defined by an implicit equation. The inverse process is called implicitization.
Sometimes, this may only involve identifying certain parameters or variables. If, for example, the model is of a wind turbine with a particular interest in the efficiency of power generation, then the parameters of interest will probably include the number, length and pitch of the blades.
Most often, parametrization is a mathematical process involving the identification of a complete set of effective coordinates or degrees of freedom of the system, process or model, without regard to their utility in some design. Parametrization of a line, surface or volume, for example, implies identification of a set of coordinates that allows one to uniquely identify any point (on the line, surface, or volume) with an ordered list of numbers. Each of the coordinates can be defined parametrically in the form of a parametric curve (one-dimensional) or a parametric equation (2+ dimensions).
Parameterization in a weather or climate model within numerical weather prediction is a method of replacing processes that are too small-scale or complex to be physically represented in the model by a simplified process. This can be contrasted with other processes—e.g., large-scale flow of the atmosphere—that are explicitly resolved within the models. Associated with these parameterizations are various parameters used in the simplified processes. Examples include the descent rate of raindrops, convective clouds, simplifications of the atmospheric radiative transfer on the basis of atmospheric radiative transfer codes, and cloud microphysics. Radiative parameterizations are important to both atmospheric and oceanic modeling alike. Atmospheric emissions from different sources within individual grid boxes also need to be parameterized to determine their impact on air quality.