Wiktionary
n. (degree of freedom English)
Wikipedia
In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinitesimal object on the plane might have additional degrees of freedoms related to its orientation.
In mathematics, this notion is formalized as the dimension of a manifold or an algebraic variety. When degrees of freedom is used instead of dimension, this usually means that the manifold or variety that models the system is only implicitly defined. See:
- Degrees of freedom (mechanics), number of independent motions that are allowed to the body or, in case of a mechanism made of several bodies, number of possible independent relative motions between the pieces of the mechanism
- Degrees of freedom (physics and chemistry), a term used in explaining dependence on parameters, or the dimensions of a phase space
- Degrees of freedom (statistics), the number of values in the final calculation of a statistic that are free to vary
- Degrees of freedom problem, the problem of controlling motor movement given abundant degrees of freedom
In physics, the degree of freedom (DOF) of a mechanical system is the number of independent parameters that define its configuration. It is the number of parameters that determine the state of a physical system and is important to the analysis of systems of bodies in mechanical engineering, aeronautical engineering, robotics, and structural engineering.
The position of a single car (engine) moving along a track has one degree of freedom because the position of the car is defined by the distance along the track. A train of rigid cars connected by hinges to an engine still has only one degree of freedom because the positions of the cars behind the engine are constrained by the shape of the track.
An automobile with highly stiff suspension can be considered to be a rigid body traveling on a plane (a flat, two-dimensional space). This body has three independent degrees of freedom consisting of two components of translation and one angle of rotation. Skidding or drifting is a good example of an automobile's three independent degrees of freedom.
The position and orientation of a rigid body in space is defined by three components of translation and three components of rotation, which means that it has six degrees of freedom.
The exact constraint mechanical design method manages the degrees of freedom to neither underconstrain nor overconstrain a device.
In statistics, the number of degrees of freedom is the number of values in the final calculation of a statistic that are free to vary.
The number of independent ways by which a dynamic system can move, without violating any constraint imposed on it, is called number of degrees of freedom. In other words, the number of degrees of freedom can be defined as the minimum number of independent coordinates that can specify the position of the system completely.
Estimates of statistical parameters can be based upon different amounts of information or data. The number of independent pieces of information that go into the estimate of a parameter are called the degrees of freedom. In general, the degrees of freedom of an estimate of a parameter are equal to the number of independent scores that go into the estimate minus the number of parameters used as intermediate steps in the estimation of the parameter itself (e.g. the sample variance has N-1 degrees of freedom, since it is computed from N random scores minus the only 1 parameter estimated as intermediate step, which is the sample mean).
Mathematically, degrees of freedom is the number of dimensions of the domain of a random vector, or essentially the number of "free" components (how many components need to be known before the vector is fully determined).
The term is most often used in the context of linear models ( linear regression, analysis of variance), where certain random vectors are constrained to lie in linear subspaces, and the number of degrees of freedom is the dimension of the subspace. The degrees of freedom are also commonly associated with the squared lengths (or "sum of squares" of the coordinates) of such vectors, and the parameters of chi-squared and other distributions that arise in associated statistical testing problems.
While introductory textbooks may introduce degrees of freedom as distribution parameters or through hypothesis testing, it is the underlying geometry that defines degrees of freedom, and is critical to a proper understanding of the concept. Walker (1940) has stated this succinctly as "the number of observations minus the number of necessary relations among these observations."
In physics, a degree of freedom is an independent physical parameter in the formal description of the state of a physical system. The set of all dimensions of a system is known as a phase space, and degrees of freedom are sometimes referred to as its dimensions.
Usage examples of "degrees of freedom".
An ingenious philosopher ^168 has calculated the universal measure of the public impositions by the degrees of freedom and servitude.
He takes advantage neither of the full abilities of his ship nor of the possibilities inherent in three degrees of freedom.
It was only when all degrees of freedom vanished that the Change took place.
Maybe other higher dimensional universes exist, beyond our seeing -- but they could be boring, because it would be hard to arrange biological processes with so many degrees of freedom.
The Ships' Landing ran well up into the Town, by way of Dock Creek, so that the final Approach was like being reach'd out to, the Wind baffl'd, a slow embrace of Brickwork, as the Town came to swallow one by one their Oceanick Degrees of freedom, once as many as a Compass box'd, and now, as they single up all lines, as they secure from Sea-Detail, as they come to rest, none.