Find the word definition

Wiktionary
omega-3 fatty acid

n. (context chemistry English) any polyunsaturated fatty acid having a double bond between the third and fourth carbon atoms from the end of the molecule farthest from the carboxylic acid; they are found in green vegetables and in the oils of fish such as salmon and mackerel; they are essential fatty acids, and seem to be beneficial in reducing the risk of heart disease

WordNet
omega-3 fatty acid

n. a polyunsaturated fatty acid whose carbon chain has its first double valence bond three carbons from the beginning [syn: omega-3]

Wikipedia
Omega-3 fatty acid

Omega-3 fatty acids — also called ω-3 fatty acids or n-3 fatty acids — are polyunsaturated fatty acids (PUFAs) with a double bond (C=C) at the third carbon atom from the end of the carbon chain. The fatty acids have two ends, the carboxylic acid (-COOH) end, which is considered the beginning of the chain, thus "alpha", and the methyl (-CH) end, which is considered the "tail" of the chain, thus "omega". The way in which a fatty acid is named is determined by the location of the first double bond, counted from the methyl end, that is, the omega (ω-) or the n- end.

The three types of omega-3 fatty acids involved in human physiology are α-linolenic acid (ALA) (found in plant oils), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) (both commonly found in marine oils). Marine algae and phytoplankton are primary sources of omega-3 fatty acids. Common sources of plant oils containing the omega-3 ALA fatty acid include walnut, edible seeds, clary sage seed oil, algal oil, flaxseed oil, Sacha Inchi oil, Echium oil, and hemp oil, while sources of animal omega-3 EPA and DHA fatty acids include fish oils, egg oil, squid oils, and krill oil. Dietary supplementation with omega-3 fatty acids does not appear to affect the risk of death, cancer or heart disease. Furthermore, fish oil supplement studies have failed to support claims of preventing heart attacks or strokes.

Omega-3 fatty acids are important for normal metabolism. Mammals are unable to synthesize omega-3 fatty acids, but can obtain the shorter-chain omega-3 fatty acid ALA (18 carbons and 3 double bonds) through diet and use it to form the more important long-chain omega-3 fatty acids, EPA (20 carbons and 5 double bonds) and then from EPA, the most crucial, DHA (22 carbons and 6 double bonds). The ability to make the longer-chain omega-3 fatty acids from ALA may be impaired in aging. In foods exposed to air, unsaturated fatty acids are vulnerable to oxidation and rancidity.