Wikipedia
LOCC, or local operations and classical communication, is a method in quantum information theory where a local (product) operation is performed on part of the system, and where the result of that operation is "communicated" classically to another part where usually another local operation is performed. An example of this is distinguishing two Bell pairs, such as the following:
$$|\psi_1\rangle = \frac{1}{\sqrt{2}}\left(|0\rangle_A\otimes|0\rangle_B + |1\rangle_A\otimes|1\rangle_B\right)$$
$$|\psi_2\rangle = \frac{1}{\sqrt{2}}\left(|0\rangle_A\otimes|1\rangle_B + |1\rangle_A\otimes|0\rangle_B\right)$$
Let's say the two- qubit system is separated, where the first qubit is given to Alice and the second is given to Bob. Assume that Alice measures the first qubit, and obtains the result 0. We still don't know which Bell pair we were given. Alice sends the result to Bob over a classical channel, where Bob measures the second qubit, also obtaining 0. Bob now knows that since the joint measurement outcome is ∣0⟩ ⊗ ∣0⟩, then the pair given was ∣ψ⟩.
These measurements contrasts with nonlocal or entangled measurements, where a single measurement is performed in C instead of the product space C ⊗ C.