Find the word definition

Wiktionary
isotachophoresis

n. A form of electrophoresis that uses a discontinuous electric field

Wikipedia
Isotachophoresis

Isotachophoresis (ITP) is a technique in analytical chemistry used for selective separation and concentration of ionic analytes. It is a form of electrophoresis: charged analytes are separated based on ionic mobility, a factor which tells how fast an ion migrates through an electric field.

In conventional ITP separations, sample is introduced between a zone of "fast" leading electrolyte (LE) and a zone of "slow" terminating (or: trailing) electrolyte (TE). Usually, the LE and the TE have a common counterion, but the coions (having charges with the same sign as the analytes of interest) are different: the LE is defined by coions with high ionic mobility, while the TE is defined by coions with low ionic mobility. The analytes of interest have intermediate ionic mobility. Application of an electric potential results in a low electrical field in the leading electrolyte and a high electrical field in the terminating electrolyte. Analyte ions situated in the TE zone will migrate faster than the surrounding TE coions, while analyte ions situated in the LE will migrate slower; the result is that analytes are focused at the LE/TE interface.

ITP is a displacement method: focusing ions of a certain kind displace other ions. If present in sufficient amounts, focusing analyte ions can displace all electrolyte coions, reaching a plateau concentration. Multiple analytes with sufficiently different ionic mobilities will form multiple plateau zones. Indeed, "plateau mode" ITP separations are readily recognized by stairlike profiles, each plateau of the "stair" representing an electrolyte or analyte zone having (from LE to TE) increasing electric fields and decreasing conductivities. In "peak mode" ITP, analytes amounts are insufficient to reach plateau concentrations, such analytes will focus in sharp Gaussian-like peaks. In peak mode ITP, analyte peaks will strongly overlap, unless so-called spacer compounds are added with intermediate ionic mobilities between those of the analytes; such spacer compounds are able to segregate adjacent analyte zones.

A completed ITP separation is characterized by a dynamic equilibrium in which all coionic zones migrate with equal velocities. From this phenomenon ITP has obtained its name: iso = equal, tachos = speed, phoresis = migration.

Isotachophoresis is exactly equal to the "Steady-State-Stacking" step in Disc Electrophoresis (1959–1964) see Ornstein*.