Find the word definition

The Collaborative International Dictionary
grand unified theory

grand unified theory \grand unified theory\, grand unification theory \grand unification theory\n. (Theoretical physics) Any of a class of physics theories that attempts to explain the electroweak forces, stong force, and gravitation within a single mathematical conceptual scheme. In the 1990's string theory and superstring theory were prominent examples. Abbreviated GUT, plural GUTs.

Wikipedia
Grand Unified Theory

A Grand Unified Theory (GUT) is a model in particle physics in which at high energy, the three gauge interactions of the Standard Model which define the electromagnetic, weak, and strong interactions or forces, are merged into one single force. This unified interaction is characterized by one larger gauge symmetry and thus several force carriers, but one unified coupling constant. If Grand Unification is realized in nature, there is the possibility of a grand unification epoch in the early universe in which the fundamental forces are not yet distinct.

Models that do not unify all interactions using one simple group as the gauge symmetry, but do so using semisimple groups, can exhibit similar properties and are sometimes referred to as Grand Unified Theories as well.

Unifying gravity with the other three interactions would provide a theory of everything (TOE), rather than a GUT. Nevertheless, GUTs are often seen as an intermediate step towards a TOE.

The novel particles predicted by GUT models are expected to have masses around the GUT scale—just a few orders of magnitude below the Planck scale—and so will be well beyond the reach of any foreseen particle collider experiments. Therefore, the particles predicted by GUT models will be unable to be observed directly and instead the effects of grand unification might be detected through indirect observations such as proton decay, electric dipole moments of elementary particles, or the properties of neutrinos. Some GUTs such as the Pati-Salam model, predict the existence of magnetic monopoles.

, all GUT models which aim to be completely realistic are quite complicated, even compared to the Standard Model, because they need to introduce additional fields and interactions, or even additional dimensions of space. The main reason for this complexity lies in the difficulty of reproducing the observed fermion masses and mixing angles. Due to this difficulty, and due to the lack of any observed effect of grand unification so far, there is no generally accepted GUT model.