##### Wikipedia

**Diversity factor**

**Diversity factor** (or simultaneity factor *k*) is a measure of the probability that a particular piece of equipment will turn on coincidentally to another piece of equipment. For aggregate systems it is defined as the ratio of the sum of the individual non-coincident maximum loads of various subdivisions of the system to the maximum demand of the complete system.

$f_{Diversity} = \frac{ \sum\limits_{i=1}^n\text{Max}(\text{Load}_i)}{\sum\limits_{i=1}^n\text{Load}_i}$

The diversity factor is almost always greater than 1 since all components would have to be on simultaneously at full load for it to be one. The aggregate load $\left( \sum\limits_{i=1}^n\text{Load}_i \right)$ is time dependent as well as being dependent upon equipment characteristics. The diversity factor recognizes that the whole load does not equal the sum of its parts due to this time interdependence (i.e. diverseness). For example, we might have ten air conditioning units that are 20 tons each at a facility. In Florida we typically assume that the average full load equivalent operating hours for the units are 2000 hours per year. However, since the units are each thermostatically controlled, we do not know exactly when each unit turns on. If the ten units are substantially bigger than the facility's actual peak A/C load, then fewer than all ten units will likely come on at once. Thus, even though each unit runs a total of 2000 hours a year, they do not all come on at the same time to affect the facility's peak load. The diversity factor gives us a correction factor to use, which results in a lower total kW load for the ten A/C units. If the energy balance we do for this facility comes out within reason, but the demand balance shows far too many kW for the peak load, then we can use the diversity factor to bring the kW into line with the facility's true peak load. The diversity factor does not affect the kWh; it only affects the kW.