Find the word definition

Wiktionary
cosmic microwave background

alt. (context astronomy English) Faint thermal radiation that pervades all space and is thought to be the remnants of the big bang. n. (context astronomy English) Faint thermal radiation that pervades all space and is thought to be the remnants of the big bang.

WordNet
cosmic microwave background

n. (cosmology) the cooled remnant of the hot big bang that fills the entire universe and can be observed today with an average temperature of about 2.725 kelvin [syn: cosmic background radiation, CBR, cosmic microwave background radiation, CMBR, CMB]

Wikipedia
Cosmic microwave background

The cosmic microwave background (CMB) is the thermal radiation left over from the time of recombination in Big Bang cosmology. In older literature, the CMB is also variously known as cosmic microwave background radiation (CMBR) or "relic radiation". The CMB is a cosmic background radiation that is fundamental to observational cosmology because it is the oldest light in the universe, dating to the epoch of recombination. With a traditional optical telescope, the space between stars and galaxies (the background) is completely dark. However, a sufficiently sensitive radio telescope shows a faint background glow, almost isotropic, that is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1964 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s, and earned the discoverers the 1978 Nobel Prize.

The CMB is well explained as radiation left over from an early stage in the development of the universe, and its discovery is considered a landmark test of the Big Bang model of the universe. When the universe was young, before the formation of stars and planets, it was denser, much hotter, and filled with a uniform glow from a white-hot fog of hydrogen plasma. As the universe expanded, both the plasma and the radiation filling it grew cooler. When the universe cooled enough, protons and electrons combined to form neutral hydrogen atoms. These atoms could no longer absorb the thermal radiation, and so the universe became transparent instead of being an opaque fog. Cosmologists refer to the time period when neutral atoms first formed as the recombination epoch, and the event shortly afterwards when photons started to travel freely through space rather than constantly being scattered by electrons and protons in plasma is referred to as photon decoupling. The photons that existed at the time of photon decoupling have been propagating ever since, though growing fainter and less energetic, since the expansion of space causes their wavelength to increase over time (and wavelength is inversely proportional to energy according to Planck's relation). This is the source of the alternative term relic radiation. The surface of last scattering refers to the set of points in space at the right distance from us so that we are now receiving photons originally emitted from those points at the time of photon decoupling.

Precise measurements of the CMB are critical to cosmology, since any proposed model of the universe must explain this radiation. The CMB has a thermal black body spectrum at a temperature of . The spectral radiance dE/dν peaks at 160.23 GHz, in the microwave range of frequencies. (Alternatively, if spectral radiance is defined as dE/dλ, then the peak wavelength is 1.063 mm.) The glow is very nearly uniform in all directions, but the tiny residual variations show a very specific pattern, the same as that expected of a fairly uniformly distributed hot gas that has expanded to the current size of the universe. In particular, the spectral radiance at different angles of observation in the sky contains small anisotropies, or irregularities, which vary with the size of the region examined. They have been measured in detail, and match what would be expected if small thermal variations, generated by quantum fluctuations of matter in a very tiny space, had expanded to the size of the observable universe we see today. This is a very active field of study, with scientists seeking both better data (for example, the Planck spacecraft) and better interpretations of the initial conditions of expansion. Although many different processes might produce the general form of a black body spectrum, no model other than the Big Bang has yet explained the fluctuations. As a result, most cosmologists consider the Big Bang model of the universe to be the best explanation for the CMB.

The high degree of uniformity throughout the observable universe and its faint but measured anisotropy lend strong support for the Big Bang model in general and the ΛCDM ("Lambda Cold Dark Matter") model in particular. Moreover, the fluctuations are coherent on angular scales that are larger than the apparent cosmological horizon at recombination. Either such coherence is acausally fine-tuned, or cosmic inflation occurred.

Usage examples of "cosmic microwave background".

On the observational side, by far the most important development has been the measurement of fluctuations in the cosmic microwave background radiation by COBE (the Cosmic Background Explorer satellite) and other collaborations.

We can imagine that now or sometime in the future, a string of this sort might sweep across the night sky, leaving an unmistakable and measurable imprint on data collected by astronomers (such as a small shift in the cosmic microwave background temperature.

So by the time our headlight beam passes out the back of the bubble and reenters normal space, it has been reduced to a long, feeble radio wavelength, barely hotter than the cosmic microwave background itself.

Ponter says the cosmic microwave background-which we take as the residue of the big-bang fireball-is really the result of electrons trapped in these strong magnetic fields absorbing and emitting microwaves.

But the software had concluded that the vertical lines attached to each star were a kind of luminosity scale, giving the distance at which the energy density of the star's radiation fell to 61 femtojoules per cubic meter coincidentally or not, the same as the cosmic microwave background.

Their EM emissions are very faint, but they're there, all right, and the sources fill the sky like the cosmic microwave background, the echo of the Big Bang.

Further, they think the cosmic microwave background radiation is the lingering echo of what they call ‘.