Wikipedia
In radio engineering and telecommunications, standing wave ratio (SWR) is a measure of impedance matching of loads to the characteristic impedance of a transmission line or waveguide. Impedance mismatches result in standing waves along the transmission line, and SWR is defined as the ratio of the partial standing wave's amplitude at an antinode (maximum) to the amplitude at a node (minimum) along the line.
The SWR is usually thought of in terms of the maximum and minimum AC voltages along the transmission line, thus called the voltage standing wave ratio or VSWR (sometimes pronounced "vizwar"). For example, the VSWR value 1.2:1 denotes an AC voltage due to standing waves along the transmission line reaching a peak value 1.2 times that of the minimum AC voltage along that line. The SWR can as well be defined as the ratio of the maximum amplitude to minimum amplitude of the transmission line's currents, electric field strength, or the magnetic field strength. Neglecting transmission line loss, these ratios are identical.
The power standing wave ratio (PSWR) is defined as the square of the VSWR, however this terminology has no physical relation to actual powers involved in transmission.
SWR is usually measured using a dedicated instrument called an SWR meter. Since SWR is a measure of the load impedance relative to the characteristic impedance of the transmission line in use (which together determine the reflection coefficient as described below), a given SWR meter can only interpret the impedance it sees in terms of SWR if it has been designed for that particular characteristic impedance. In practice most transmission lines used in these applications are coaxial cables with an impedance of either 50 or 75 ohms, so most SWR meters correspond to one of these.
Checking the SWR is a standard procedure in a radio station. Although the same information could be obtained by measuring the load's impedance with an impedance analyzer (or "impedance bridge"), the SWR meter is simpler and more robust for this purpose. By measuring the magnitude of the impedance mismatch at the transmitter output it reveals problems due to either the antenna or the transmission line.