Wiktionary
n. (context physics English) The particle-like solution to an electroweak field equation
Wikipedia
A sphaleron ( "slippery") is a static (time-independent) solution to the electroweak field equations of the Standard Model of particle physics, and it is involved in processes that violate baryon and lepton numbers. Such processes cannot be represented by Feynman diagrams, and are therefore called non-perturbative. Geometrically, a sphaleron is simply a saddle point of the electroweak potential energy (in the infinite-dimensional field space), much like the saddle point of the surface z(x,y)=x−y in three-dimensional analytic geometry.
In the standard model, processes violating baryon number convert three baryons to three antileptons, and related processes. This violates conservation of baryon number and lepton number, but the difference B−L is conserved. In fact, a sphaleron may convert baryons to anti-leptons and anti-baryons to leptons, and hence a quark may be converted to 2 anti-quarks and an anti-lepton, and an anti-quark may be converted to 2 quarks and a lepton. A sphaleron is similar to the midpoint (=0) of the instanton, so it is non-perturbative. This means that under normal conditions sphalerons are unobservably rare. However, they would have been more common at the higher temperatures of the early universe.