Wiktionary
n. (context mathematics English) A kind of graph in which most nodes are not neighbors but most can be reached from every other by a small number of steps, i.e. the typical distance between two randomly chosen nodes grows proportionally to the logarithm of the number of nodes in the network.
Wikipedia
A small-world network is a type of mathematical graph in which most nodes are not neighbors of one another, but most nodes can be reached from every other node by a small number of hops or steps. Specifically, a small-world network is defined to be a network where the typical distance L between two randomly chosen nodes (the number of steps required) grows proportionally to the logarithm of the number of nodes N in the network, that is:
L ∝ logN
In the context of a social network, this results in the small world phenomenon of strangers being linked by a short chain of acquaintances. Many empirical graphs show the small-world effect, e.g., social networks, the underlying architecture of the Internet, wikis such as Wikipedia, and gene networks.
A certain category of small-world networks were identified as a class of random graphs by Duncan Watts and Steven Strogatz in 1998. They noted that graphs could be classified according to two independent structural features, namely the clustering coefficient, and average node-to-node distance (also known as average shortest path length). Purely random graphs, built according to the Erdős–Rényi (ER) model, exhibit a small average shortest path length (varying typically as the logarithm of the number of nodes) along with a small clustering coefficient. Watts and Strogatz measured that in fact many real-world networks have a small average shortest path length, but also a clustering coefficient significantly higher than expected by random chance. Watts and Strogatz then proposed a novel graph model, currently named the Watts and Strogatz model, with (i) a small average shortest path length, and (ii) a large clustering coefficient. The crossover in the Watts–Strogatz model between a "large world" (such as a lattice) and a small world was first described by Barthelemy and Amaral in 1999. This work was followed by a large number of studies, including exact results (Barrat and Weigt, 1999; Dorogovtsev and Mendes; Barmpoutis and Murray, 2010). Braunstein found that for weighted ER networks where the weights have a very broad distribution, the optimal path scales becomes significantly longer and scales as N^{1/3}.