Find the word definition

Wikipedia
P-bodies

Processing bodies (P-bodies) are distinct foci within the cytoplasm of the eukaryotic cell consisting of many enzymes involved in mRNA turnover. P-bodies have been observed in somatic cells originating from vertebrates and invertebrates, plants and yeast. To date, P-bodies have been demonstrated to play fundamental roles in general mRNA decay, nonsense-mediated mRNA decay, adenylate-uridylate-rich element mediated mRNA decay, and microRNA induced mRNA silencing. Not all mRNAs which enter P-bodies are degraded, as it has been demonstrated that some mRNAs can exit P-bodies and re-initiate translation.

The following activities have been demonstrated to occur in or to be associated with P-bodies:

  • decapping and degradation of unwanted mRNAs
  • storing mRNA until needed for translation
  • aiding in translational repression by miRNAs (related to siRNAs)

In neurons, P-bodies move by motor proteins in response to stimulation. This is likely tied to local translation in dendrites.

P-bodies were first described in the scientific literature by Bashkirov et al. in 1997, in which they describe "small granules… discrete, prominent foci" as the cytoplasmic location of the mouse exoribonuclease mXrn1p. It wasn’t until 2002 that a glimpse into the nature and importance of these cytoplasmic foci was published. In 2002, researchers demonstrated that multiple proteins involved with mRNA degradation localize to the foci. During this time, many descriptive names were used to identify the processing bodies, including "GW-bodies" and "decapping-bodies"; however "P-bodies" was the term chosen and is now widely used and accepted in the scientific literature. Recently evidence has been presented suggesting that GW-bodies and P-bodies may in fact be different cellular components. The evidence being that GW182 and Ago2, both associated with miRNA gene silencing, are found exclusively in multivesicular bodies or GW-bodies and are not localized to P-bodies. Also of note, P-bodies are not equivalent to stress granules, the two structures support overlapping cellular functions but generally occur under different stimuli. Hoyle et al. suggests a novel site termed EGP bodies, or stress granules, may be responsible for mRNA storage as these sites lack the decapping enzyme.