Wiktionary
n. (context calculus English) An equation involving the derivatives of a function of only one independent variable.
Wikipedia
In mathematics, an ordinary differential equation (ODE) is a differential equation containing one or more functions of one independent variable and its derivatives. The term ordinary is used in contrast with the term partial differential equation which may be with respect to more than one independent variable.
ODEs that are linear differential equations have exact closed-form solutions that can be added and multiplied by coefficients. By contrast, ODEs that lack additive solutions are nonlinear, and solving them is far more intricate, as one can rarely represent them by elementary functions in closed form: Instead, exact and analytic solutions of ODEs are in series or integral form. Graphical and numerical methods, applied by hand or by computer, may approximate solutions of ODEs and perhaps yield useful information, often sufficing in the absence of exact, analytic solutions.