Wikipedia
Law of tangents
In trigonometry, the law of tangents is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides.
In Figure 1, , , and are the lengths of the three sides of the triangle, and , , and are the angles opposite those three respective sides. The law of tangents states that
$$\frac{a-b}{a+b} = \frac{\tan[\frac{1}{2}(\alpha-\beta)]}{\tan[\frac{1}{2}(\alpha+\beta)]}.$$
The law of tangents, although not as commonly known as the law of sines or the law of cosines, is equivalent to the law of sines, and can be used in any case where two sides and the included angle, or two angles and a side, are known.
<!--