Wikipedia
In the field of mathematics known as representation theory, an L-packet is a collection of (isomorphism classes of) irreducible representations of a reductive group over a local field, that are L-indistinguishable, meaning they have the same Langlands parameter, and so have the same L-function and ε-factors. L-packets were introduced by Robert Langlands in , .
The classification of irreducible representations splits into two parts: first classify the L-packets, then classify the representations in each L-packet. The local Langlands conjectures state (roughly) that the L-packets of a reductive group G over a local field F are conjecturally parameterized by certain homomorphisms of the Langlands group of F to the L-group of G, and Arthur has given a conjectural description of the representations in a given L-packet.