Find the word definition

Wiktionary
k-theory

n. (context math English) The study of a ring generated by vector bundles over a topological space or scheme, with certain applications in string theory.

Wikipedia
K-theory

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is an extraordinary cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

K-theory involves the construction of families of K- functors that map from topological spaces or schemes to associated rings; these rings reflect some aspects of the structure of the original spaces or schemes. As with functors to groups in algebraic topology, the reason for this functorial mapping is that it is easier to compute some topological properties from the mapped rings than from the original spaces or schemes. Examples of results gleaned from the K-theory approach include Bott periodicity, the Atiyah-Singer index theorem and the Adams operations.

In high energy physics, K-theory and in particular twisted K-theory have appeared in Type II string theory where it has been conjectured that they classify D-branes, Ramond–Ramond field strengths and also certain spinors on generalized complex manifolds. In condensed matter physics K-theory has been used to classify topological insulators, superconductors and stable Fermi surfaces. For more details, see K-theory (physics).

K-theory (physics)

In string theory, the K-theory classification refers to a conjectured application of K-theory (in abstract algebra and algebraic topology) to superstrings, to classify the allowed Ramond–Ramond field strengths as well as the charges of stable D-branes.

In condensed matter physics K-theory has also found important applications, specially in the topological classification of topological insulators, superconductors and stable Fermi surfaces (, ).

Usage examples of "k-theory".

This could never be explained by classical physics, and was one of the things that led to k-theory being recognized in the first place.