Wikipedia
bgcolor=#e7dcc3 colspan=2 align=center|Set of dual uniform p-q duopyramids
colspan=2 align=center|
Example 4-4 duopyramid (16-cell)
Orthogonal projection
bgcolor=#e7dcc3|Type
bgcolor=#e7dcc3| Schläfli symbol
bgcolor=#e7dcc3| Coxeter diagram
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges
bgcolor=#e7dcc3|Vertices
bgcolor=#e7dcc3| Vertex figures
bgcolor=#e7dcc3| Symmetry
bgcolor=#e7dcc3| Dual
bgcolor=#e7dcc3|Properties
colspan=2|
bgcolor=#e7dcc3 colspan=2 align=center|Set of dual uniform p-p duopyramids
bgcolor=#e7dcc3| Schläfli symbol
bgcolor=#e7dcc3| Coxeter diagram
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges
bgcolor=#e7dcc3|Vertices
bgcolor=#e7dcc3| Vertex figure
bgcolor=#e7dcc3| Symmetry
bgcolor=#e7dcc3| Dual
bgcolor=#e7dcc3|Properties
In geometry of 4 dimensions or higher, a duopyramid is a dual polytope of a duoprism. As a dual uniform polychoron, it is called a p-q duopyramid with a composite Schläfli symbol {p} + {q}, and Coxeter-Dynkin diagram .
The regular 16-cell can be seen as a 4-4 duopyramid, , symmetry , order 128.
A p-q duopyramid has Coxeter group symmetry [p,2,q], order 4pq. When p and q are identical, the symmetry is doubled as , order 8p.
Edges exist on all pairs of vertices between the p-gon and q-gon. The 1-skeleton of a p-q duopyramid represents edges of each p and q polygon and pq complete bipartite graph between them.