Find the word definition

Wiktionary
de morgan algebra

n. (context algebra English) A bounded distributive lattice which has — additionally — an involution which satisfies De Morgan's laws.

Wikipedia
De Morgan algebra

__NOTOC__ In mathematics, a De Morgan algebra (named after Augustus De Morgan, a British mathematician and logician) is a structure A = (A, ∨, ∧, 0, 1, ¬) such that:

  • (A, ∨, ∧, 0, 1) is a bounded distributive lattice, and
  • ¬ is a De Morgan involution: ¬(xy) = ¬x ∨ ¬y and ¬¬x = x. (i.e. an involution that additionally satisfies De Morgan's laws)

In a De Morgan algebra, the laws

do not always hold. In the presence of the De Morgan laws, either law implies the other, and an algebra which satisfies them becomes a Boolean algebra.

Remark: It follows that ¬( x∨y) = ¬x∧¬y, ¬1 = 0 and ¬0 = 1 (e.g. ¬1 = ¬1∨0 = ¬1∨¬¬0 = ¬(1∧¬0) = ¬¬0 = 0). Thus ¬ is a dual automorphism.

If the lattice is defined in terms of the order instead, i.e. (A, ≤) is a bounded partial order with a least upper bound and greatest lower bound for every pair of elements, and the meet and join operations so defined satisfy the distributive law, then the complementation can also be defined as an involutive anti-automorphism, that is, a structure A = (A, ≤, ¬) such that:

De Morgan algebras were introduced by Grigore Moisil around 1935. although without the restriction of having a 0 and an 1. They were then variously called quasi-boolean algebras in the Polish school, e.g. by Rasiowa and also distributive i-lattices by J. A. Kalman. (i-lattice being an abbreviation for lattice with involution.) They have been further studied in the Argentian algebraic logic school of Antonio Monteiro.

De Morgan algebras are important for the study of the mathematical aspects of fuzzy logic. The standard fuzzy algebra F = ([0, 1], max(x, y), min(x, y), 0, 1, 1 − x) is an example of a De Morgan algebra where the laws of excluded middle and noncontradiction do not hold.

Another example is Dunn's 4-valued logic, in which false < neither-true-nor-false < true and false < both-true-and-false < true, while neither-true-nor-false and both-true-and-false are not comparable.