Wiktionary
n. (context mathematics English) The trigonometric function of the complement of the supplied angle (thus cosine and sine are each other's cofunctions)
Wikipedia
In mathematics, a function f is cofunction of a function g if f(A) = g(B) whenever A and B are complementary angles. This definition typically applies to trigonometric functions.
For example, sine and cosine are cofunctions of each other (hence the "co" in "cosine"):
$\sin\left(\frac{\pi}{2} - A\right) = \cos(A)$
$\cos\left(\frac{\pi}{2} - A\right) = \sin(A)$
The same is true of secant and cosecant and of tangent and cotangent:
$\sec\left(\frac{\pi}{2} - A\right) = \csc(A)$
$\csc\left(\frac{\pi}{2} - A\right) = \sec(A)$
$\tan\left(\frac{\pi}{2} - A\right) = \cot(A)$
$\cot\left(\frac{\pi}{2} - A\right) = \tan(A)$
These equations are also known as the cofunction identities.
This also holds true for the coversine (coversed sine, cvs), covercosine (coversed cosine, cvc), hacoversine (half-coversed sine, hcv), hacovercosine (half-coversed cosine, hcc) and excosecant (exterior cosecant, exc):
$\operatorname{cvs}\left(\frac{\pi}{2} - A\right) = \operatorname{ver}(A)$
$\operatorname{cvc}\left(\frac{\pi}{2} - A\right) = \operatorname{vcs}(A)$
$\operatorname{hcv}\left(\frac{\pi}{2} - A\right) = \operatorname{hav}(A)$
$\operatorname{hcc}\left(\frac{\pi}{2} - A\right) = \operatorname{hvc}(A)$
$\operatorname{exc}\left(\frac{\pi}{2} - A\right) = \operatorname{exs}(A)$