Find the word definition

Wiktionary
cofunction

n. (context mathematics English) The trigonometric function of the complement of the supplied angle (thus cosine and sine are each other's cofunctions)

Wikipedia
Cofunction

In mathematics, a function f is cofunction of a function g if f(A) = g(B) whenever A and B are complementary angles. This definition typically applies to trigonometric functions.

For example, sine and cosine are cofunctions of each other (hence the "co" in "cosine"):

$\sin\left(\frac{\pi}{2} - A\right) = \cos(A)$

$\cos\left(\frac{\pi}{2} - A\right) = \sin(A)$

The same is true of secant and cosecant and of tangent and cotangent:

$\sec\left(\frac{\pi}{2} - A\right) = \csc(A)$

$\csc\left(\frac{\pi}{2} - A\right) = \sec(A)$

$\tan\left(\frac{\pi}{2} - A\right) = \cot(A)$

$\cot\left(\frac{\pi}{2} - A\right) = \tan(A)$

These equations are also known as the cofunction identities.

This also holds true for the coversine (coversed sine, cvs), covercosine (coversed cosine, cvc), hacoversine (half-coversed sine, hcv), hacovercosine (half-coversed cosine, hcc) and excosecant (exterior cosecant, exc):

$\operatorname{cvs}\left(\frac{\pi}{2} - A\right) = \operatorname{ver}(A)$

$\operatorname{cvc}\left(\frac{\pi}{2} - A\right) = \operatorname{vcs}(A)$

$\operatorname{hcv}\left(\frac{\pi}{2} - A\right) = \operatorname{hav}(A)$

$\operatorname{hcc}\left(\frac{\pi}{2} - A\right) = \operatorname{hvc}(A)$

$\operatorname{exc}\left(\frac{\pi}{2} - A\right) = \operatorname{exs}(A)$